If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+15x-128=0
a = 4; b = 15; c = -128;
Δ = b2-4ac
Δ = 152-4·4·(-128)
Δ = 2273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{2273}}{2*4}=\frac{-15-\sqrt{2273}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{2273}}{2*4}=\frac{-15+\sqrt{2273}}{8} $
| IxI+2x-3=0 | | 4x+21=7-3x | | -25=3t | | 2x+x+x=20-4 | | -25n=-175 | | (70-2x)=38 | | n÷2=-9 | | 7=n/(-4) | | (x)^2-(x-7)^2=217 | | 2−3x=30−7x | | -2x-5=-2x-3 | | 21x+5=-16* | | -8x1+2x2-5x3+6x4=1 | | 8x+3=5x–6 | | 16,4/x=8 | | 0x=0* | | x=-145° | | 2b²=66 | | 13x+16=9x+32 | | 20z-5-12=10z+8= | | 9x+7=42+2x | | x-3*(x-5)+4=29-x | | (2x+9)=19 | | 5·(-3+2y)+y=7 | | -2/3(9x-15)=-4/5(20+10x) | | 39x*42x*59x=2.538.200 | | 6y÷4=54 | | 8=1/2*x | | x+2x+3x=2.538.200 | | x+0.0175x+.3=61.56 | | 6x–3x+3= | | x-0.0175x+.3=61.56 |